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Abstract. The effect of solutal convection on the unidirectional solidification of a binary alloy cooled from below

is considered. Soon after the onset of solidification a mushy region often forms, and is accompanied by vigorous
convection in the molten alloy above. In contrast, the fluid in the mush appears unaffected by the neighbouring
flow and remains essentially quiescent. This work considers the nonlinear convective stability of the mush and
determines a criterion for channelling in the mush to occur.

The basic state is a similarity solution, so that a quasi-static approximation must be applied in order to apply
conventional stability theory. Moreover, although the model for solidification is relatively simple, an analytical
expression for linear stability is not available. Thus the series of equations arising from the nonlinear stability
analysis lead to a complicated set of symbolic and numerical calculations. Stable finite-amplitude solutions are
found for Rayleigh numbers larger than critical for all values of the chosen superheat. The nonlinear solutions
demonstrate the possibility of channelling within the mush dependent upon the strength of convection.

These finite-amplitude solutions are extended further by the calculation of a numerical solution of the model
equations. The evolution of the stream function and the mass fraction is followed, the onset of convection and
freckling can then be deduced from the numerical simulation. The onset of convection in the mush is found in
terms of the mush Rayleigh number, and compares favourably with linear stability theory and experimental data.
The onset of freckling is also given in terms of a Rayleigh number, but is sensitive to the initial conditions. This
appears to explain the large disagreement found in experiments aimed at finding a criterion for freckling.
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1. Introduction

Freckles are one form of compositional segregation that can occur in castings of solidified
binary alloys. They take the form of columns rich in one component of the alloy and with an
equiaxed crystalline grain structure [1, pp. 251]. Cogsgl.[2] established that freckles arise
from the eventual solidification of flow channels (or chimneys) which often develop in the
mushy region of a binary alloy. A mush is a region of mixed phase comprising of a complicated
dendritic structure, and results from the morphological instability of the solid/liquid phase
boundary [3]. Chimneys appear as channels of liquid alloy within the mush, and solidify at a
later time than the surrounding phase mixture.

In the foundry a metal alloy solidifies in an ingot from a number of boundaries, so that the
heat flux varies in direction. This makes it difficult to visualise solidification and complicates
the flow in the melt. Consequently, in the laboratory a model alloy, such as aqueous ammonium
chloride, is frequently used to investigate freckling and is only cooled on one boundary. This
has the benefit of solidifying like a metal alloy, but it is transparent and so observation is
easier. We shall focus our discussion on the unidirectional solidification of aqueous ammonium
chloride.

Once aqueous ammonium chloride is sufficiently cooled, a mush soon forms, but the
liquid remains essentially quiescent [4]. An important consequence of the phase diagram of
this model alloy is the preferential incorporation of ammonium chloride molecules into the
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crystalline lattice. Thus, in order to conserve solute, water is expelled at the solid—liquid
interface and decreases the local density. This light fluid builds up in a boundary layer at the
top of the mush due to limited liquid diffusion. Compositional convection is initiated in the
completely liquid region when this boundary layer reaches a critical thickness [5].

The liquid region soon adopts a finger-like structure Turner [6, pp. 256]), while the
mush remains stagnant. However, as the mushy layer thickens, a further convective instability
occurs in the mush. Convection in the mush gradually increases leading to dendrite dissolution
and thus preferred flow paths known as flow chimneys. This work builds upon Emms and
Fowler's [7] work (hereafter referred to as EF) by constructing stable weakly nonlinear
solutions and examining the influence of convection on porosity of the mush. These solutions
are appropriate to the weakly convecting state in the mush. The quiescent state of the model
is given by a similarity solution similar to that found by Worster [8]. Thus, we use a quasi-
static approximation to determine the stability of the nonlinear solutions. A full numerical
simulation of the solidification process is required to extend these solutions up to the onset
of freckles. Experimental evidence [4] demonstrates that, in the absence of any convection,
solidification is accurately described by a similarity solution. Thus, our conclusions should be
directly applicable to observations.

Amberg and Homsy [9] have constructed weakly nonlinear solutions for the convective
state in the mush. They considered finite-amplitude solutions to Worster’s equations [10] for a
constansolidification rate. The main limitations to their results were the adoption of the near-
eutectic approximation and the assumption of a fixed boundary at the top of the mush. It was
also assumed that the mush was thin, so that the basic steady state was linear to leading order.
For two-dimensional convection it was found that subcritical rolls could occur in principle,
although in an experiment they would be unlikely to be seen because of the narrow parameter
range. Three-dimensional hexagonal structures were found to be transcritical for a much larger
parameter range with branches corresponding to upflow at the centres or at the boundaries.
Recent experiments by Tait, Jahrling and Jaupart [11] appear to confirm cells forming with
an hexagonal planform. However, chimneys can be seen originating from the nodes of each
hexagon, whereas the theory predicts upflow at the centre. Amberg and Homsy considered
the stability of their finite-amplitude solutions only by way of analogy with similar nonlinear
solutions of Rayleigh—8nard flow. Anderson and Worster [12] have recently considered the
stability of the nonlinear solutions of Amberg and Homsy’s model. They found that stable
hexagons with inflow and outflow at the centre were possible. Here we shall consider the
stability of weakly nonlinear solutions perturbed from a time-dependent state.

Numerical simulations of freckle formation have previously been calculated by Neilson and
Incropera [13, 14] and Felicelli, Heinrich and Poirier [15]. Neilson and Incropera considered
the solidification of aqueous ammonium chloride whereas Feligigdll. simulated the solidi-
fication of a lead-tin alloy. Both studies were based upon averaged models for which there was
no need to explicitly track the mush/liquid interface. The interface position was determined
a posteriorifrom the temperature field. There are a number of deficiencies to this approach.
Both simulations were started from a quiescent state, and therefore one would usually expect
finger convection above the mush to be initiated first. To resolve such convection accurately
places a considerable restriction on the size of the mesh spacing. Both numerical studies only
exhibited the mushy layer mode of instability [10], that is, no finger convection appeared in
their results. Neilson and Incropera suggested that perturbations at the mush interface lead to
channel formation. However, this could equally be the onset of fingering which, owing to the
limits of the grid spacing, does not fully develop. Furthermore, the width of the channels that
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Figure 1L Schematic of a vertically solidifying alloy with a mushy region.

eventually formed depended upon the mesh size, which means that the numerical scheme does
not accurately reflect the solution to the governing equations. Felatadli do not mention
whether there is any such dependence in their results. They predicted channels forming at
the sides of the mold, if no initial perturbation was given to the solution. Thus, the spacing
between freckles would appear to be determined by the width of the mold, contrary to the
experimental observations of Tait and Jaupart [4].

The paper is divided into a number of sections. In Section 2 we introduce the nondimen-
sionalised reduced model. The following two sections consider the stability of finite-amplitude
perturbations to the similarity solution. In Section 5 we introduce the two numerical schemes
used to solve the two-dimensional problem. Section 6 contains a description of a typical time
series. The following section defines two parameters that can be used to determine the onset of
convection and the onset of channelling in the mush from a time series. We are therefore able
to compare our criteria with linear stability theory and experimental data. Section 8 contains
some conclusions and suggestions for future work.

2. Model formulation

To describe freckle formation we shall use the reduced model developed in EF. Models for
mushy regions now seem well established [5, 8,16-17]. It seems unwise to reproduce the
substantial amount of detail needed to describe the approximations made in the derivation of
the reduced model. Full details can be found in Emms [18] and EF. To summarise, the model
describes the unidirectional solidification of a binary alloy with eutectic solid forming below

a mushy region of thickness The principal assumptions are thermodynamic equilibrium

in the mush, infinite Lewis number in the mush, no solidification shrinkage, and the near-
eutectic approximation (that is the initial composition is assumed to be near the eutectic). One
consequence of this last assumption is that the solid/mush boundary moves slowly, and so we
can assume the origin of our coordinate system is fixed on this interface. A schematic diagram
of a solidifying alloy is shown in Figure 1. The notation is described in Table 1.
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Table 1 Nomenclature

B boundary-value operator
c composition of the lighter
component of the alloy

C specific heat of the liquid alloy
macroscopic length scale

w the convective cell width

F far-field boundary

g gravitational acceleration

h spatial step size

k wave number

L latent heat

Ly linear operator

N, number of intervals in the-direction
N, number of intervals in the-direction
s position of liquid/mush interface

t time

T temperature

v weakly nonlinear solution

x horizontal coordinate

z vertical coordinate

Z scaled vertical cooordinate
Nondimensional parameters

R mush Rayleigh number

A~  superheat

S contribution of solidification to

thermal budget

Subscripts

c onset of convection
E eutectic

f onset of freckling
i, grid position

l liquid

s solid/starting value
0 similarity solution
00 far-field values

Greek letters

«
a1, o
aj
.
Bi
Ap

At

)

A2 Q3 eeD HR T

similarity variable on interface
coeffs. to G-L eqn.
thermal expansion coefficient
solutal expansion coefficient
difference between the far-field
liquidus density and that
of the eutectic liquid
time step
initial perturbation to quasi-static
similarity solution

initial perturbation to similarity solution

used in numerical scheme
liquidus slope
thermal diffusivity of the liquid phase
liquid viscosity
relaxation parameter
permeability
density
scaled solid mass fraction
stream function
slow time scale
growth of stream function
liquid mass fraction
similarity variable
perturbed interface position

Superscripts

+ =0 %3

nth time step

nondimensional variables or adjoint
values from the numerical model
values from the numerical model
liquid side of mush/liquid interface
mush side of mush/liquid interface

We nondimensionalise the spatial coordinatgime ¢, temperaturd’, stream function)

and liquid mass fraction of mushusing

d2

X t:<_>t*’ T = TP 4 (T — Tp)T",

Ki

p=nm x=1- (L2,

Coo

(2.1)
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whered is a macroscopic length scale (such as the height of the container holding the liquid
alloy), x; is the thermal diffusivity of the liquid phaséz® is the far-field liquidus temperature,
andT} is the eutectic temperature. A reference value for the dens&:@; gravity isg and

Ap = pilB (er — cx0) — o (T7° = T)]

is the difference between the far-field liquidus density, and that of the eutectic liquid. Here
af, B are thermal and solutal expansion coefficients, is the far-field composition, and

cg is the eutectic composition. Henceforth we shall drop the asterisks on the nondimensional
variables. Nondimensionalisation introduces three parameters that govern solidification and
convection: the Rayleigh number

_ Apgdllo
prp

R

the superheat

Too —T%°
A = I L and
X TR —Tg
S§=1
+ CZFCOO,

which is related to the Stefan number and reflects the contribution solidification makes to the
thermal budget. Heré&lp is a permeability scalgy is the viscosity,L is the latent heaf

is the liquidus slope, and; is the specific heat of the liquid phase. Typical values of these
parameters for agueous ammonium chloride given in EF are

R~100, Ay, ~16  S~125 (2.2)

In terms of the temperaturE, composition of light component stream functiony and
the (scaled) solid mass fraction of musthe nondimensional model can be writterzas oo

T—AL, (2.3)
fors < z < oo
Tt + z/):1c|z:st = VzTa (24)

onz = s(z,t):

¥, =0, T =0, T = —c,, (2.5)
for0< z < s:

Slet +hac: — e = V¢, VP =Rey, Sy = Ve, (2.6)
onz=0:

c=1 =0, 2.7)
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wheren is the normal to the mush/liquid interface. These are Equations (5.1)—(5.5) of EF.

We use the notatiof-]* to denote the jump in the quantity across the interface. The
regions to which the model equations apply are shown in Figure 1. Equations (2.4) and (2.6)
express conservation of energy in the liquid and mush regions. The advective term in (2.4)
requires some clarification. Emms and Fowler [7] found that finger-like convection above
the mush can be described by an averaged energy equation. However, once convection has
started in the mush, an additional mass flux will be superimposed on the finger structure.
The advective term in (2.4) represents an approximation to this flux. As long as the interface
remains fairly flat a purely vertical flux seems a reasonable approximation. In general, an
averaged momentum equation governs the flow in the liquid, but for simplicity we do not
consider this here. The remaining equations are Darcy’s lawy(2r@) Equation (2.@)which
follows from conservation of species.

The temperature in the mush is given by the liquidus relation, which in nondimensional
variables is

T =—c. (2.8)

We are not concerned with the composition in the liquid region, as this uncouples in the model
presented here.
In the absence of convectigg = 0), the reduced model has a similarity solution given

by

erfc
sg = 2a\/f, To=Ax {1 77} ,

 erfca 2.9)
., erf8YZy bo— '
co = erfSl/ZOé’ 0 = Co,
wheren = z/2+/t and the free-boundary location= « is determined by
—a? 1/2 o—Sa?
Ao _S77€ (2.10)

erfca erfSY2q

From this state we aim to construct weakly nonlinear solutions and examine their stability.
However, we need to decide what we mean by stability, since the basic state is time dependent.
Furthermore, nonlinear stability theory is a generalisation of linear stability theory, so we must
specify just how the linear stability of a time-dependent state is defined. A similar problem
arises in the study of a fluid layer whose basic temperature profile is changing with time. Such
a situation can occur for example when one studies a growing thermal boundary layer [19]),
or a fluid layer being cooled from above [20]. Little analytical progress has been made in this
area, since the review by Homsy [21].

The nondimensionalised model is an implicit moving-boundary problem [22, pp. 19]
because there is no explicit relationship &1/ 0t on the interface. We can make the problem
explicit by differentiating one of the boundary conditions or= s with respect to time.
However, this still leaves the problem of calculating the moving interface relative to a fixed
mesh. One particularly attractive alternative is the fictitious-region method [23]. This is usually
applied to moving-boundary problems where only one of the phases is in motion, that is
solid/liquid Stefan problems. The method involves the construction of a set of equations valid
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over the entire domain, which reduce in each phase to the relevant governing equations. Thus,
the moving boundary is determinadposteriori. The construction of equations valid in both
domains means that a set of discontinuous coefficients must be introduced. Although the
fictitious-region method has been successfully applied to other Stefan problems, it is not the
method we choose here. This is primarily due to the form of (2.4) which necessitates the
introduction of a Heaviside function into the general governing equations.

Instead we apply a front-fixing transformation. This has the disadvantage that the form of
the equations is complicated, but as a by-product yields an evolution equatian for

3. Nonlinear stability

The complexities of nonlinear stability analysis limit our scope for dealing with the time-
dependent basic state. Consequently, in this work we restrict ourselves to the concept of
quasi-static stability. Thus we write

t= s%t*, x = sor”, z = 802", R,, = soR, s = 508", (3.2)

wheresg = 2a+/t is the position of the interface given by a similarity solution and is
considered fixed in time. The mush Rayleigh number is denoteR,pyUnder the quasi-
static approximation the similarity solution (2.9) becomes (dropping the asterisks)

erf(SY2az)

_ 1/2 _ 1/2
co = 1—erf(§Y?az), 0=~ 31, erfSY2q,
erfc(az)
To = Ay |1— . 2
0 o [ erfca ] (32)
Perturbing the basic state we write
c=co+e, T=To+T, s=1+C. (3.3)

Dropping the hats, and substituting in Equations (2.3)—(2.7) we obtain the following set of
equations

asz — 00.

T — 0, (3.4)
forl+ ¢ <z < oo:

T, + Yulo=14¢(Tos + To) = VT, (3.5)
onz=1+¢(:

To+T =0, co+c=0, ), — Gty =0,

(3.6)
To, + T, —Tp(r = czCp — Coz — Cs,

for0<z<1+¢:

V2 = Rnce, Sl — hoce + helcor + ¢2)) = Ve, (3.7)
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onz =0:

c=0, 1 =0. (3.8)
We consider solutions to the above system of the form

Y =cehr+ 2P+, T=ehh+e®To+--, c=cc1+ecp+ -,

3.9
(=eC1+e% o+, Rpm=Re+eRp+---, (3.9)

where R, is the critical Rayleigh number given in the linear stability theory of EF, and the
perturbation parameter< 1. Since we are expanding about the critical Rayleigh numnber,
there is no perturbation expansion for the wave number; the sidi» dietermines whether
we consider solutions above or below the marginal stability curve (notice there igrterm
in (3.9% — see below).

To study the stability of these solutions we employ a multiple-scales analysis, that is we
consider the slow time scale defined by

T = €%, (3.10)

and examine slowly growing perturbations. This is at odds with the quasi-steady approximation
as noted by Robinson [19, 24] for a growing thermal boundary layer. However, we proceed by
considering stability to be ‘defined’ for this system relative to the steady state (3.2) obtained
by using the quasi-steady approximation. The reason for choe$iagd note to define the

slow time scale is that by symmetRs = 0 (or we find that for the solvability condition to be
satisfied at ordes? requiresR; = 0). Then, in order to have a nontrivial Ginzburg—Landau
equation, we require ~ 0(52) to be the slow time. As in the work of EF, we assume an
exchange of stabilities, so that

=1z, z,71), T=T(z,z,71), c=c(z,2,7), ¢ =((x,2,71).

Substituting the expansions (3.9) in (3.8) and collecting coefficients of poweyrsvefobtain
the following series of problems

asz — oo:
T, — 0,
forl< z < oo:
V2T — g|:—1To: = By,
onz=1:
Yk = Ag, Ty, + To.Cr = Bk, ¢k + cozCk = Ok,
(Tozz + 022)Ck + Tk + gz = D,

forO< 2z < 1;

S7IV2e; — Yruco, = Fy, V2, — Recky = G,
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onz =0:
Cp = 0, 1/)19 = 0, (3.11)

fork = 1,2,3,.... The casé = 1 corresponds to the linear stability problem with =
By =--- =G, = 0. The coefficientsly, By, ..., Gy for k = 2,3 are given in Emms [18].

4. The Ginzburg-Landau equation

Guided by the linear stability analysis of EF we restrict attention to the horizontal domain
0 < z < 7/k. wherek, is the critical wave number. We enforce the boundary conditions

ce =T, =1 =0,

atz = 0, 7 /k.. Thus we force the convection cells to be of uniform width. More generally we
can relax this assumption by introducing another larger space scale [25], [26]. However, this
will complicate an already laborious solution procedure and is not of practical interest for finite
solidification tanks, so we omit the possibility. Also note that we only consider perturbations
with the critical wavenumber at leading order. Thus the nonlinear stability analysis presented
here is much less general than the linear stability analysis presented in Emms [18], which
considered arbitrary infinitesimal perturbations. Using a complete set of orthonormal functions
(such as the eigenfunctions of the linear stability problem) it is theoretically possible for us
to consider an arbitrary finite-amplitude perturbation. This yields an infinite set of ordinary
differential equations to determine the stability [27, pp. 385]. Here we will instead only
consider the nonlinear interaction of the most unstable mode in the hope that other modes
have little effect on the stability of the solution.
If we write v; = (¢;,¢;, T;, &)T then theO(e) problem(k = 1) is
Vzwl — Recyy
—1g2
Lvy = S Ve o ! (4.1)
VT1 — Toxp1z|-=1
((TOzz + COzz)Cl + Ty, = Clz)|z:l

and the boundary conditions on the interface 1 can be written

wkz
Bvy=| Ty +T0.(x | =0. 4.2

ck + cozCk
The solution to (4.1) is of the form
ik, M1

v=Ar) | | e, (4.3)
11,
C11

where the real part is understood to be under consideratiea,A(7) can be taken to be a
real function, andik; 2411(2), c11(2), T1a(2), ¢11)" is the eigenfunction given in EF.
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Thek = 2 problem can now be written

Lvp = M>p(v1), Bup = Hp(v1), (4.4)
where
G
2(v1) Ap(v1
Fy(v1)
M = , H; = | Ba(v1
Ea(v) Ca (1
D3 (v1)

Substituting (4.3) iM4, and H, we arrive at expressions of the form
M2 = Az(mzo —+ mo2 eZikC‘”), (45)
Hy = A?(hgo + happ €#%e7), (4.6)

wheremzo = (0, fa0, e20,d20)", m22 = (0, f22, €22,d22)", h2o = (—iaz0,b20,¢20)", and
hoo = (—iagg, baa, c22)T. The hats ofeyg, ¢22 distinguish these variables froepo, c2o. Notice
that there is no solvability problem for (4.4), reflecting the fact fRatvas set to zero earlier.
The general solution to (4.4) is

20 —11p22 ik, Yp1a
2 €20 €22 ke ‘11 ike
vy = A + ke [ 4+ B gkt 4.7
T2 T22 T11
(20 (22 (11
where the real part is understood. The functi®n= B(7) is determined by the solvability
condition atk = 4. By examination ofd3, B3, ..., G3 we find the term containin@ plays

no part in the solvability condition fak = 3. As noted by Drazin and Reid [27, pp. 383], this

is to be expected, since the term could equally be incorporated into the first order terms by
modifying the definition ofA. Henceforth, we shall drop this term frosm. At this point it is
convenient to introduce the operatdrs and B,, defined by

(D2 - nzkg)d}mn + chkccmn
S HD? — n2k2)conn — nkecosPmn

Lyvpn = ) 4.8
! (D? — 12k2) T — 1k Tos b (1) (4.8)
((TOzz + COzz)Cmn + DT + Dcmn)|z:1
Dippn,
Brvmn = | Tom + To:Cmn | (49)

Cmn + €02Cmn

wherev, = (Ymns Cmns Trmns Cmn)? @andD = d/dz.
At k = 2 we have two problems to solve

Lovo = myo, Bovag = hao (4.10)
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and
Lovap = mao, Bavaz = haa. (4.11)

The solutionuyg to the system (4.10) represents the so-called mean motio{sa). The
numerical solutions to these problems will give

120 2SN Zk.x
cos %
vy = A2 || €22-0 fie (4.12)
Tro Troc0S % .x
(20 (22C0S &z
The problem ak = 3 can be written
Lvs= Mz,  Buvz= Hs, (4.13)
where
931(1)1, Uz) sinkcx 0
, U2) COSk ...Sink i i
M3(v1,v2) = farlvs, v2) i -1 | higher harmonics. .,
631(1)1, Uz) COSkcx - Sll’lkcx
d31(v1,v2) cOSk.x ...sink.z
az1(v1,v2) .
Hj3(v1,v2) = | bsi(vi,v2) | cosk.z + | ... | sink.z + higher harmonics. . .
c31(v1, v2)

Consequently, we have a nontrivial solvability condition, which provides an evolution equation
for A. Equation (4.13) is only solvable if there exists a solution to

Liv31 = mg, Bqvzy = hg, (4.14)

wherems = (gs1, fa1, €31, da1)’ andhs = (asy, ba1, ¢31)” . By the Fredholm alternative this
has a solution if

<m3a Uj?k>1> = B(h3a Uj?tl)a (415)

whereB is a bilinear function arising from the nonhomogeneous boundary conditions on the
interface. Here, the inner product is defined for real-valued veatarsdv by

1 00
(u,v) = / (urv1 + ugvy) dz + / uzv3z dz + uqvy. (4.16)
0 1

In additionvi; = (13, 51, T3, (31) IS given by the solution to the homogeneous adjoint
problem

Livi, =0, (4.17)
with boundary conditions on the interface

Bjvs, = 0. (4.18)
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Figure 2(a) 'Iz'he finite amplitude temperatufg and (b) the difference to the similarity soluti@h— 7o for R, = 1
ande = 10"“.

Figure 3(a) The compositior, and (b) the difference to the similarity solutien- ¢ for R, = 1 ande = 1072,

The exact forms ofj, B] andB can be found from integration by parts. The details are given
in Emms [18].
Equation (4.15) is the Ginzburg-Landau equation. A great deal of computation will even-
tually lead to an equation of the more familiar form
dd _ a1R2 A + an A3, (4.19)
dr
wherea;, ap must be determined numerically. From EF we must have> 0, since we
have instability forR > R.. If ap > 0, the bifuraction from the basic state is said to be
subcritical, whereas, ifi; < 0, the bifurcation is supercritical. If the bifurcation is subcriti-
cal, we would expect experimental and numerical results to predict the onset of convection atan
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Figure 6.The range of validity of the weakly nonlinear solution. Figure 7. The finite difference

grid shown for the representa-
tive valuesh = 5, F = 2.

12

earlier time than predicted by linear stability. Also, initial conditions would play an important
part in the determination of the critical time. If the bifurcation is supercritical, the instability
should be relatively insensitive to initial conditions, assuming the quasi-static approximation
is reasonable.

We performed two sets of calculations using a far-field approximatienF = 10, 20.
The calculations are rather complicated since the solution to the linear stability problem can
only be found numerically. The details of the calculation can be found in Emms [18]. To
summarise, the problem requires the numerical solution of the linear stability problem (4.3),
the two linear systems &t= 2: (4.10), (4.11), and the adjoint problem (4.17). These solutions
then give the coefficients of (4.19) when substituted in (4.15).

Using the values in (2.2), we observed that both numerical computations fer 10,
F = 20 gave the values a@i; anda; in (4.19) as

a1 =035 ap=—0045 (4.20)
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The results indicate a supercritical bifurcation, with the approximation of the infinite boundary
having no discernible effect. Thus, a stable finite-amplitude solution exisi®;far 0 with
equilibrium amplitude

a1 R
Aoy =1/ — ;22. (4.21)

This solution is plotted in Figures 2-5 f&, = 1 ande = 10 2, which givesA,, = 2-78.
The stream function is positive which indicates that convection proceeds in a clockwise
direction in the mush. This increases the composition on the left-hand side of thaezall
x = 0) and decreases composition on the right (Figure 3b). Without the quasi-steady approx-
imation, the (scaled) mass fraction of solid is related to the composition by

_Ye_ o2
h=qg =5 Ve (4.22)

From the equilibrium compositional field (Figure 3) we can seeithat is negative on the left

of the cell and positive on the right. Therefore, freezing is inhibited on the left and promoted
on the right. The mush/liquid interface is located on the isotheem 0. Consequently, the
interface advances on the left side of the cell as shown in Figure 5.

The size of: measures the strength of convection.sAis increased, so the solid fraction
on the left side of the cell is diminished until eventually 0 inside the mush. Consequently,
the theory predicts a channel forming in the mush near the liquid interface. hug
is our criterion for channelling and ultimately freckle formation. It is also the metallurgical
condition [16] evaluated on the mush-liquid interface, since & 0 atz = s then from
(4.22), d’/dt > 0 atz = s.

Once¢ < 0, our model is no longer valid, and so there is a bound on the validity of the
finite amplitude solutions. We can determine this bound by noting ens, ¢; = Sc,,. Of
course, we present our equilibrium solution in terms of variables defined using the quasi-steady
approximation (3.1). However, we only need the sigr.gf Therefore, since the amplitude
of the nonlinear solution increases monotonically to the equilibrium valye we can use
¢,z < 0 atz = s as the bound. In Figure 6 we plotted mpin,(z,1) for 0 < =z < w/kc
against using the equilibrium finite-amplitude solution f& = 1. Ate = 0-82, ¢ becomes
negative and the finite-amplitude solution has no physical meaning. As we requrel
to perform the weakly nonlinear analysis, this bound does not restrict the range of solutions
further. However, it does mean that we cannot use the nonlinear solution to give a criterion for
freckling. Indeed, such a criterion would be rather unsatisfactory as it would be given in terms
of the fluid velocity which is an integral part of the problem. We can resolve this difficulty by
solving the reduced model numerically and we address this problem next.

5. The numerical solution
We fix the interface ol = 1 by applying the transformation
z=sZ. (5.1)

This disrupts the structure of the equations since s(z,t). If we define the width of the
horizontal domain ag,,, then it is convenient to rescale

T = dy 7, t=d3t, (5.2)
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in an analogous manner to the linear stability analysis of EF. Generally we hopedg set
close to)./2 where), is the critical wavelength given by linear stability theory. This should
mean that the most unstable mode (predicted by linear stability) will be excited during the
numerical simulation, and therefore the results can be compared. If we jukt sefl, then

linear stability predicts that the onset of convection is delayed. Furthermore, as time progresses,
the mush interface advances, but the width of the cell remains fixed. Thus, the aspect ratio
increases, as does the minimum wave number that can be excited, which further delays the
onset of convection. Consequently, the situation may arise in which convection never occurs
for sufficiently smalld,,. Note that, ifd,, is made sufficiently large, multi-cellular convection

is expected, and,, is then not the width of @ell. Henceforth we shall drop the hats on

andt. We also need some additional boundary conditions en 0, 1, which we take to be
periodic, that is

=T, = s, = 0. (5.3)

At t = 0 there is a singularity in the interface velocity= o/+/t. Therefore, we start the
numerical simulation using the similarity solution at timhe- ¢, < t., wheret, = t.(Ay) IS
the time when convection is initiated according to the linear stability analysis of EF. The effect
of an initial perturbation to the non-convective state can be assessed if the initial conditions
are taken as

s = sg + €COSmT, P = esintzsin(rZ/2),

: . 54
T =Ty — ecosnzSiNTZ, ¢ = ¢o — eCcOSmx SINTZ, (-4)

att = t;, wheree represents the size of the initial perturbation. Although (5.4) satisfies the
boundary conditions to the problem, it is obviously not a solution. Consequently, we expect
there will be a short transient in which the numerical scheme adjusts to the solution of the
equations. It is expected that the perturbation will initially decrease and then increase, once
convection has been initiated.

The application of the front-fixing transformation (5.1) considerably disrupts the structure
of the full equations. Consequently, we shall only consider two numerical schemes, both of
which approximate the time derivative with a backward difference. For simplicity we assume
a square mesh with the number of intervals inthdirection and the-direction given by

1 F
= — NZ:_7
h’ h

respectively, where = F is the approximation to the infinite boundary, ainds the step

size. The finite-difference grid is shown in Figure 7 with the interface lyingjoa M.

Using the usual notation, we observe that the quafitityrepresents the approximation to

T (ih, jh,nAt). The first and second spatial derivatives are approximated by means of central
differences, and so the truncation erroCigAt + h?). The front-fixing transformation also
introduces mixed derivatives. We approximate these terms using a non-centred seven-point
molecule of the form

Pr T~ Ty + Tl — 2105 + T — T 0 + T
0107 2h2

In the first numerical scheme the interface position and the convective derivatives are cal-
culated from the temperature field at the old time step. Thus, the finite-difference equations

N, (5.5)

(5.6)
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Figure 8.The evolution of the mush/liquid interface fdr, = 2.0, Ao = 1.6, At = 107%, h = &, e = 107°,
ts = 0-1 where (a) shows = s(z,t), and (b) shows the difference to the similarity solutign

are linear in variables at the new time step. We call this the lagged scheme. The second scheme
uses the temperature field at the new time step, and so requires successive subétjtutoin.

we expect the second, fully implicit scheme to describe the coupling betwy&eandp more
accurately. Both schemes lead to a system of difference equations of the same structure.

6. Atypical time series

In this section we describe a simulation for a typical value of the supethgat 1-6, and

S = 1.25 using the fully implicit scheme. Linear stability theory (EF) predicts convective
instability att, = R2/4a?R?d2,, which for R = 10 andd,, = 2 givest. = 0-286. We take
the width of the horizontal domain to lakg, = 2 because the critical wavelength predicted by
linear stability is

Ao = 2R, /k.R. (6.1)

One convective cell is expected to have a wiklit2, and for the values abovk, = 3-57. The
simulation was started at timg = 0-1, and the initial perturbation to the similarity solution
was set ta = 1072, in an effort to minimize noise at the beginning of the simulation. The
mesh sizé, and the time step\¢t were specified as = 3i2 andAt = 10~3. The results are
displayed in Figures 8-10.

The evolution of the mush/liquid interface is shown in Figure 8(a), and the deviation from
the similarity solution in Figure 8(b). It can be seen from these figures that there is little
deviation from the similarity solution, but towards the end of the simulation the interface
advances more quickly near= 0, and is slowed near= 1. As with the nonlinear solutions
this corresponds to clockwise convection in the mush carrying colder, more concentrated
liquid up the left-hand side of the cell, and therefore promoting solidification. Conversely, on
the right-hand side of the cell, warmer less concentrated fluid from the liquid region enters

the mush and inhibits solidification.
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In Figure 9 the evolution of the mass fraction is depicted. Little deviation is expected
initially from the non-convective solution, so the results are presented as the difference from
the similarity solutiongg. Initially at ¢ = 0-3 (Figure 9(a)) the solution is dominated by
the local discretisation error for the diffusive terms, even though linear stability predicts
convection to have been initiated. In Figure 9(c) there is somariation which suggests
that convection has started. Solute-rich fluid rising on the left side of the cell decreases the
mass fraction of solid, while falling solute-depleted fluid on the right increases the solid mass
fraction. Gradually the effects of convection become more pronounced (Figures 9(d—f)) until
eventually att ~ 2 - 0 the simulation fails to find a solution to the difference equations. In
the steady case it is known that, ongdecomes negative, the solution fails to exist by a
maximum principle [16]. Thus, in the current simulation we suspect that, prc® at some
timet = ¢, the solution no longer exists, and therefore the numerical scheme will ‘blow-up’.
Indeed, if we plotp at two times before the end of the simulation (Figures 10(a,b)), we can
see thatp is negative at the mush/liquid interfa¢€ = 1), and a channel appears to grow
down into the mush. This is observed experimentally by Tait and Jaupart [4]. However, it
should be remembered that our mathematical model is invalid as sapr<a8. We might
consider the mush interface to be now¢g@g- 0, and specify the other appropriate interfacial
boundary conditions there. Unfortunately, we have assumed a particular structure for the flow
in the liquid region. Whemp < 0, the convection is shown experimentally to be dominated by
the flow out of the chimneys, obliterating the finger-like structure in the liquid. Consequently,
we must reformulate our model if we wish to follow the development of a channel within the
mush.

7. Further results

From the sequence of graphs 8-10 it is difficult to ascertain exactly when convection starts.
Near the beginning of the simulation the stream function is very small, its magnitude being
determined by the initial perturbation. To gauge the strength of convection we introduce the
2-norm defined by

101 1/2
||¢||=(/O / |¢|2dxdz) . )

Thus fort ~ ¢, ||¢]| ~ €, wheree is the initial perturbation. If we suppose that growth (or
decay) is locally exponential (in time) of the forrfi'ethen the local growth rate is

e B G0l
‘at"’g[ ] ] (7.2)

wheredt is some small time perturbation. In particular we can use the criterionO for
the onset of convection in the mush. In terms of the finite-difference schemes, we use the
trapezium rule to approximate (7.1) giving

Nz 1 M—-1N.—-1
||w||~h2[ Z Wh)2+ > S (W) ] (7.3)
j=1 i=1

The time perturbatiodt was typically taken to be ten time steps in order to help smooth
numerical noise.



Freckle formation in a solidifying binary alloy 193

00 o0

LIALIATRL 2 Gy
Votteste e o ag 5 L
e S
o fegiay L5 DAL ST 10
SETATI A LT, LT
Protisie e 0o 06 to iy Sy S
Voot v b oy e

LR BOL

oo
et ¢

7

Yoy 4 IAPKISNTATAAATH
Wode o e 0 0 008 LA
LRGSO AT 1o
Vo i
R S oo oo

584  ABOVE 0

. B3 bBELOW o

ABOVE 0
Bl eetow o

(a) (b)
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The onset of freckling has been defined to occur when0. However, this is not the most
convenient form for a finite-difference scheme. If we define

gb(a:,l—h,t)) ’

. (7.4)

1 = s <_
then to leading ordep, is independent of the grid spacihg The condition for the onset
of freckling is now¢; > 0. In Figures 11 and 12 we plet and ¢, for the same initial
data as the time series in the Section 6. As is evident from Figure 11, the initial perturbation
e = 10~ decays until at ~ 0-18,0 > 0 and convection begins. Growth is then approximately
exponential withe ~ 5, until at¢ ~ 2-2 the simulation terminates. From Figure 12 we see that
convection has little effect on the mass fraction right up 0 1.5. At¢ ~ 1.9, ¢; > 0, and
hence we predict channel formation. In one further plot (Figure 13) we show the variation of
¢ ¢ with ||1||. Notice how||y|| remains small throughout the simulation, and barely reaches
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0-02 before the program terminates. This tends to support the supposition that the solution to
the problem does not exist fgr; > 0, and we are not witnessing numerical instability.

A fundamental requirement of any finite-difference scheme is that the solution produced
should be independent of the grid spacing. We can use the growth,ratel the freckling
paramete, to assess the dependence for the fully implicit scheme. In Figure 14(a,b) we plot
o and¢; against time forh = &, &, &. There is very good agreement for the growth rate
over the entire simulation. Indeed all three runs gave the onset of convectjprna®-18. We
use a superscrigV to denote values obtained from the numerical simulation. The agreement
is not so good forp;, especially near the end of the simulation.

We can make another check on the schemes by fixing the interface and only consider the
temperature and stream function in the mush. The equations are then effectively those for
convection in a porous medium for which it is known that the critical Rayleigh number is
R, ~ 27.1 [28]. Here the equivalent Rayleigh numbersi8. The onset of convection was
determined numerically in this case to occur whéh~ 27, further validating the schemes.

TT T T [ T T T T [ T T T T T T T 1T [T TT7

0.0 0.005 0.01 0.015 0.02 0.025

Il

Figure 13.The variation ofp ¢ with ||¢/||. Initial data was the same as in Figure 11.
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Table 2 The effect of varying the width of the horizontal domdin with initial
datal. = 1-6,h = &, ¢ = 10 °, d5t, = 04,d5, At = 4 x 10>,

Domain widthd,, ~ Onset of convectiod’,t,”  Onset of freckling?, ¢}

1.0 —

2.0 069 7-46
30 062 810
4.0 062 9-38

+ t=t Lagged 0
A =t tmplicit
O t=t Implicit
[ t=t" Lagged

7

IR A T )

2
o
i

/
/
!
/
H
;
!
[
[ ===0.09
i
H
1
i
i
'
!

-50—

b RN R R R AR R AR R R RN R R AR
* 10° 10° 0.0 0.05 0.1 0.15 0.2 0.25
t

Figure 15. A comparison of the lagged and fully = Figure 16.The growth rater for different start times
implicit schemes. Initial data for the lagged scheme ¢;. Initial data wasd,, = 2:0, A.c = 1.6, h = %6
wasd, = 2:0,Acc = 1.6, At =2x 10* h = &, =105 At =103,

ts = 0-5. For the implicit scheme the time step was

increased ta\t = 1072,

7.1. INITIAL CONDITIONS

In this section we determine the dependence of the convectiortdiraed the freckling time

& on the initial conditions. Clearly, there will be some effect on the subsequent solidification

f
if the initial perturbation is sufficiently large. We pltff andtjcV againsk using each scheme

for h = 1—16 in Figure 15. A coarser mesh was used because each point represents a separate
simulation, which means that the computational cost rises. Fot0~2, 10-8, 10~/ the onset

of convection could only be estimated from the cusve o(t). A large amount of numerical

noise made this difficult, so these points are speculative. The two schemes gave approximately
the same value ofY, irrespective of the initial perturbation (with the above proviso). This
suggests that the bifurcation to the convective state is supercritical in line with the results of
the nonlinear stability analysis. However, the onset of channels clearly depends strongly on
the initial perturbation. For smadlthere is considerable disagreement between the schemes.
The fully implicit scheme shows the expected tendeno},ﬁ}’of» const ase becomes small,

since then the truncation error is bigger thaithe lagged scheme does not appear to model
the coupling betweea, T', andp as well, so in future we restrict attention to the fully implicit
scheme. We obtain similar results by varying the start @ig&igure 16). Changing thg is
tantamount to changing the initial perturbation. A larger valugaheang|« || will be larger

at the onset of convection, hence significantly diminishing the time for freckles to form.
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Table 3 The onset of convection inthe mush with = 2:0,At =107, h = 4, e = 107°,
ts = 0-05.

Aco a d? t. (linear stability) d2tY (simulation) RY R. ke

01 11205 0448 0-333 1293 1500 174
03 08090 0510 0-332 932 1156 159
06 06075 0623 0-336 704 959 148
1.0 04666 0806 0-452 627 838 139
16 03503 1146 0-748 606 750 131
30 02238 2253 1.932 622 672 121
6-:0 01270 6094 6-660 655 627 114
100 00807 14439 — — 613 111
00 0 00 — — 603 109

For domains of greater width we resort to a finer mash 3i2 in an attempt to preserve
accuracy. A number of results for differing cell widths are shown in Table 2. A square
domain(d,, = 1) did not give rise to convection, and hence there was no freckling. Note
that the times are multiplied by2, to reflect the initial scaling made in Equation (5.2). The
onset of convection was not greatly affected by the width of the horizontal domain, but
the onset of freckling was more strongly influenced. The results show that a wider mold will
significantly inhibit freckling, which is somewhat contrary to experimental evidence. It should
be remembered, however, that the initial perturbation (5.4) assumed a single convection cell.
For larger values of,, a number of convection cells form. This means that an additional time
is needed to adjust to the correct form of solution, which delays the initiation of channelling.

7.2. ACOMPARISON WITH LINEAR STABILITY THEORY

Linear stability calculations for the initiation of convection were presented in EF as a function
of the superheaf\ .. In this section we compare those results with the present numerical
calculations. In Table 3 we have tabulated a number of results for differing superheats. From
the linear stability analysis the critical Rayleigh numigr and the critical wave numbéy.

were calculated. The critical wavelength is given by

2R,
Ao = , 7.5
k.R (7.5)
and the time for the onset of convection is
RZ
2 4N _ c
dute = 7355 (7.6)

The initial data for each run is given in the caption to the figure. A plot of the numerical
results for the critical Rayleigh numbg&y. is shown in Figure 17. Increasing superheat appears
to delay the onset of convection as has been noted by Worster [29]. Also shown on Figure 17
are the linear stability results from EF. For large valueAgf a numerical solution is not fea-
sible with the present scheme. Indeed, to compute the resulisfot 6-0 we require’ = 20,
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Figure 17.A comparison of the critical Rayleigh num-  Figure 18.The effect of varying the initial perturba-
ber for convection in the mush as predicted by the tion to the similarity solution on the onset of freckles.
linear stability analysis, and the numerical simulation. Initial data was the same as in Figure 15.

For each pointd,, = 2.0, At = 107, h = Z,
e =10 t; = 0-05.

with a correspondingly large increase in computational time. In the stability analysis of EF it
was found thaR,. — constasA,, — oo. Here,RY increases at large superheat, even though
) is still increasing. Generally, the numerical results predict the onset of convection earlier
(initial conditions have little effect). We can take this as a consequence of the quasi-steady
approximation. However, it is reassuring to note that the results are qualitatively similar.

7.3. THE ONSET OF CHANNELLING

It was established in Section 7.1 that the freckling time depended strongly on the initial
perturbation. We will now establish the form of the dependence. More generally (not just for
exponential growth), we define the local growth (or decay) rate to be

1 dfy]l
o =—— 7 (7.7)
]l dt
On integration we obtain
t
91l = ||¢||cexr{ /o dt] , 78)
wherel[¢||. = [|¢]| att = t. If we defineT” = log||y[| att = ¢}, then
7
T = /tN o (t) dt + log |4 (7.9)

From Figure 11 it can be seen thaguickly attains a fairly constant value after the onset of
convection. On assuming that= o* is constant, we find that (7.9) becomes

T —1lo c
ty —tl = T —log]flle (7.10)

(&
O-*



198 P.W. Emms

We pIott}V — t¥ against log|¢||. for A,, = 1.6 in Figure 18. The assumption of constant
growth rate appears to be a very good approximation. A best fit straight line was calculated to
be

tf —tY =-013-017log||4||. , (7.11)

which givess* ~ 6 (cf. Figure 11). Thus, (7.11) gives the freckling time as a function of the
initial perturbation; the onset of convection remains constarft’a{u 0-18 forAy, = 1-6.

Careful experimentation should lead to very small initial perturbations. Therefore, a value
for the freckling time might reasonably be taken as the maximum time predicted by the implicit
scheme, that ig2 tY ~ 10-4 (Figure 15). If we use the similarity solution to define a Rayleigh
number for the onset of freckles, then

R} = 2ady\/t} R. (7.12)

For R = 10, we findR; ~ 22:6. Such a value can only be a crude estimate for the time at
which channels might be visible in experiments, sidtés usually an order of magnitude
larger. However, the figure does not seem unreasonable given that the critical Rayleigh number
for freckling recorded experimentally ranges from 20 to 250 [4, 30]. Indeed, experiments have
yet to distinguish the convective instability from the onset of channelling, primarily due to
difficulty of making observations in the mush.

8. Conclusions

Stable weakly nonlinear solutions appropriate to convection in a solidifying mushy layer have
been derived. These are able to predict the onset of freckling, but only outside the range of
the validity of the asymptotic expansions. Thus we solved the alloy model numerically, using
a front-fixing transformation. We aimed to complement the Rayleigh-number criterion for
convective instability in the mush, with a Rayleigh-number criterion for freckle formation (as
suggested by Fowler [16]). From the numerical simulation we found that this is not possible,
because freckle formation is strongly influenced by the initial conditions. Thus, we can only
stipulate a critical Rayleigh number for freckling at which very small initial perturbations to
the convective state lead to channelling. It appears that the best way to prevent freckles from
forming is to prevent the onset of convection in the muesl.py some stirring mechanism).

The two numerical schemes describe one way of solving the moving-boundary problem
that arises out of alloy solidification. They are not necessarily the best way, but they do enable
the first theoretical computations to be made for freckle formation. Of course, we could
improve the efficiency of the schemes by introducing a variable time step or mesh size. The
time step must be sufficiently small nea#= ¢, to model accurately the large change in the
interface position. However, later on in the simulation there is no reason why the time step
could not be increased. A variable grid spacing would allow more nodes to be placed near the
interface, and fewer ned@f = F'. This would decrease computation time considerably, since
at present the routine spends most of its time finding the temperature in the liquid region.
These measures would, however, complicate an already laborious solution procedure.

The independence of the onset of convection with the magnitude of the initial perturbation
would seem to be at odds with the hypotheses of Amberg and Homsy [9]. They predicted
a subcritical bifurcation from the convection-less state with the chimney figivme as the
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appropriate solution, once the flow was sufficiently rapid. Here, the numerical simulation pre-
dicts a supercritical bifurcation in agreement with the nonlinear stability analysis in Sections 3
and 4. However, it should be remembered that Amberg and Homsy allowed the permeability
to be a function of porosity, whereas in the reduced model (2.3)—(2.7) permeability is assumed
constant.

The analysis presented herein was guided by the solidification of ammonium-chloride
solution. Recently, Huppert [31] has case some doubt as to whether results obtained from
the study of this solution can be extrapolated to metal binary alloys. Many other aqueous
salt solutions exhibit the same convective flow patterns as are found in the solidification of
ammonium chloride. Yet, rarely do other aqueous solutions form the distinctive chimneys
structures visible in the mush. This may be due to the low entropy of fusion of ammonium-
chloride solution in common with metal alloys, or the fact that it forms non-faceted (and
thus truly dendritic) unhydrated crystals. Huppert and Hallworth [32] have noticed that the
tendency to form freckles is reduced if copper sulphate is added to the solution. This makes
the crystals more faceted and so might explain the special properties of ammonium chloride.
However, Worster and Kerr [33] have recently suggested that the addition of copper sulphate
increases the undercooling at the mush/liquid interface, which in turn lowers the Rayleigh
number for the mush. Clearly this problem has not yet been fully resolved.
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