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Abstract. The effect of solutal convection on the unidirectional solidification of a binary alloy cooled from below
is considered. Soon after the onset of solidification a mushy region often forms, and is accompanied by vigorous
convection in the molten alloy above. In contrast, the fluid in the mush appears unaffected by the neighbouring
flow and remains essentially quiescent. This work considers the nonlinear convective stability of the mush and
determines a criterion for channelling in the mush to occur.

The basic state is a similarity solution, so that a quasi-static approximation must be applied in order to apply
conventional stability theory. Moreover, although the model for solidification is relatively simple, an analytical
expression for linear stability is not available. Thus the series of equations arising from the nonlinear stability
analysis lead to a complicated set of symbolic and numerical calculations. Stable finite-amplitude solutions are
found for Rayleigh numbers larger than critical for all values of the chosen superheat. The nonlinear solutions
demonstrate the possibility of channelling within the mush dependent upon the strength of convection.

These finite-amplitude solutions are extended further by the calculation of a numerical solution of the model
equations. The evolution of the stream function and the mass fraction is followed, the onset of convection and
freckling can then be deduced from the numerical simulation. The onset of convection in the mush is found in
terms of the mush Rayleigh number, and compares favourably with linear stability theory and experimental data.
The onset of freckling is also given in terms of a Rayleigh number, but is sensitive to the initial conditions. This
appears to explain the large disagreement found in experiments aimed at finding a criterion for freckling.
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1. Introduction

Freckles are one form of compositional segregation that can occur in castings of solidified
binary alloys. They take the form of columns rich in one component of the alloy and with an
equiaxed crystalline grain structure [1, pp. 251]. Copleyet al.[2] established that freckles arise
from the eventual solidification of flow channels (or chimneys) which often develop in the
mushy region of a binary alloy. A mush is a region of mixed phase comprising of a complicated
dendritic structure, and results from the morphological instability of the solid/liquid phase
boundary [3]. Chimneys appear as channels of liquid alloy within the mush, and solidify at a
later time than the surrounding phase mixture.

In the foundry a metal alloy solidifies in an ingot from a number of boundaries, so that the
heat flux varies in direction. This makes it difficult to visualise solidification and complicates
the flow in the melt. Consequently, in the laboratory a model alloy, such as aqueous ammonium
chloride, is frequently used to investigate freckling and is only cooled on one boundary. This
has the benefit of solidifying like a metal alloy, but it is transparent and so observation is
easier. We shall focus our discussion on the unidirectional solidification of aqueous ammonium
chloride.

Once aqueous ammonium chloride is sufficiently cooled, a mush soon forms, but the
liquid remains essentially quiescent [4]. An important consequence of the phase diagram of
this model alloy is the preferential incorporation of ammonium chloride molecules into the
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crystalline lattice. Thus, in order to conserve solute, water is expelled at the solid–liquid
interface and decreases the local density. This light fluid builds up in a boundary layer at the
top of the mush due to limited liquid diffusion. Compositional convection is initiated in the
completely liquid region when this boundary layer reaches a critical thickness [5].

The liquid region soon adopts a finger-like structure (cf. Turner [6, pp. 256]), while the
mush remains stagnant. However, as the mushy layer thickens, a further convective instability
occurs in the mush. Convection in the mush gradually increases leading to dendrite dissolution
and thus preferred flow paths known as flow chimneys. This work builds upon Emms and
Fowler’s [7] work (hereafter referred to as EF) by constructing stable weakly nonlinear
solutions and examining the influence of convection on porosity of the mush. These solutions
are appropriate to the weakly convecting state in the mush. The quiescent state of the model
is given by a similarity solution similar to that found by Worster [8]. Thus, we use a quasi-
static approximation to determine the stability of the nonlinear solutions. A full numerical
simulation of the solidification process is required to extend these solutions up to the onset
of freckles. Experimental evidence [4] demonstrates that, in the absence of any convection,
solidification is accurately described by a similarity solution. Thus, our conclusions should be
directly applicable to observations.

Amberg and Homsy [9] have constructed weakly nonlinear solutions for the convective
state in the mush. They considered finite-amplitude solutions to Worster’s equations [10] for a
constantsolidification rate. The main limitations to their results were the adoption of the near-
eutectic approximation and the assumption of a fixed boundary at the top of the mush. It was
also assumed that the mush was thin, so that the basic steady state was linear to leading order.
For two-dimensional convection it was found that subcritical rolls could occur in principle,
although in an experiment they would be unlikely to be seen because of the narrow parameter
range. Three-dimensional hexagonal structures were found to be transcritical for a much larger
parameter range with branches corresponding to upflow at the centres or at the boundaries.
Recent experiments by Tait, Jahrling and Jaupart [11] appear to confirm cells forming with
an hexagonal planform. However, chimneys can be seen originating from the nodes of each
hexagon, whereas the theory predicts upflow at the centre. Amberg and Homsy considered
the stability of their finite-amplitude solutions only by way of analogy with similar nonlinear
solutions of Rayleigh–B́enard flow. Anderson and Worster [12] have recently considered the
stability of the nonlinear solutions of Amberg and Homsy’s model. They found that stable
hexagons with inflow and outflow at the centre were possible. Here we shall consider the
stability of weakly nonlinear solutions perturbed from a time-dependent state.

Numerical simulations of freckle formation have previously been calculated by Neilson and
Incropera [13, 14] and Felicelli, Heinrich and Poirier [15]. Neilson and Incropera considered
the solidification of aqueous ammonium chloride whereas Felicelliet al.simulated the solidi-
fication of a lead-tin alloy. Both studies were based upon averaged models for which there was
no need to explicitly track the mush/liquid interface. The interface position was determined
a posteriorifrom the temperature field. There are a number of deficiencies to this approach.
Both simulations were started from a quiescent state, and therefore one would usually expect
finger convection above the mush to be initiated first. To resolve such convection accurately
places a considerable restriction on the size of the mesh spacing. Both numerical studies only
exhibited the mushy layer mode of instability [10], that is, no finger convection appeared in
their results. Neilson and Incropera suggested that perturbations at the mush interface lead to
channel formation. However, this could equally be the onset of fingering which, owing to the
limits of the grid spacing, does not fully develop. Furthermore, the width of the channels that
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Freckle formation in a solidifying binary alloy 177

Figure 1. Schematic of a vertically solidifying alloy with a mushy region.

eventually formed depended upon the mesh size, which means that the numerical scheme does
not accurately reflect the solution to the governing equations. Felicelliet al. do not mention
whether there is any such dependence in their results. They predicted channels forming at
the sides of the mold, if no initial perturbation was given to the solution. Thus, the spacing
between freckles would appear to be determined by the width of the mold, contrary to the
experimental observations of Tait and Jaupart [4].

The paper is divided into a number of sections. In Section 2 we introduce the nondimen-
sionalised reduced model. The following two sections consider the stability of finite-amplitude
perturbations to the similarity solution. In Section 5 we introduce the two numerical schemes
used to solve the two-dimensional problem. Section 6 contains a description of a typical time
series. The following section defines two parameters that can be used to determine the onset of
convection and the onset of channelling in the mush from a time series. We are therefore able
to compare our criteria with linear stability theory and experimental data. Section 8 contains
some conclusions and suggestions for future work.

2. Model formulation

To describe freckle formation we shall use the reduced model developed in EF. Models for
mushy regions now seem well established [5, 8, 16–17]. It seems unwise to reproduce the
substantial amount of detail needed to describe the approximations made in the derivation of
the reduced model. Full details can be found in Emms [18] and EF. To summarise, the model
describes the unidirectional solidification of a binary alloy with eutectic solid forming below
a mushy region of thicknesss. The principal assumptions are thermodynamic equilibrium
in the mush, infinite Lewis number in the mush, no solidification shrinkage, and the near-
eutectic approximation (that is the initial composition is assumed to be near the eutectic). One
consequence of this last assumption is that the solid/mush boundary moves slowly, and so we
can assume the origin of our coordinate system is fixed on this interface. A schematic diagram
of a solidifying alloy is shown in Figure 1. The notation is described in Table 1.
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178 P. W. Emms

Table 1. Nomenclature

Greek letters
B boundary-value operator � similarity variable on interface
c composition of the lighter �1; �2 coeffs. to G-L eqn.

component of the alloy ��l thermal expansion coefficient
Cl specific heat of the liquid alloy ��l solutal expansion coefficient
d macroscopic length scale �� difference between the far-field
dw the convective cell width liquidus density and that
F far-field boundary of the eutectic liquid
g gravitational acceleration �t time step
h spatial step size " initial perturbation to quasi-static
k wave number similarity solution
L latent heat � initial perturbation to similarity solution
Lk linear operator used in numerical scheme
Nx number of intervals in thex-direction � liquidus slope
Nz number of intervals in thez-direction �l thermal diffusivity of the liquid phase
s position of liquid/mush interface � liquid viscosity
t time � relaxation parameter
T temperature � permeability
v weakly nonlinear solution � density
x horizontal coordinate � scaled solid mass fraction
z vertical coordinate  stream function
Z scaled vertical cooordinate � slow time scale

� growth of stream function
Nondimensional parameters � liquid mass fraction
R mush Rayleigh number � similarity variable
�1 superheat � perturbed interface position
S contribution of solidification to

thermal budget

Subscripts Superscripts
c onset of convection n nth time step
E eutectic � nondimensional variables or adjoint
f onset of freckling 0 values from the numerical model
i; j grid position N values from the numerical model
l liquid + liquid side of mush/liquid interface
s solid/starting value � mush side of mush/liquid interface
0 similarity solution
1 far-field values

We nondimensionalise the spatial coordinatesx, time t, temperatureT , stream function 
and liquid mass fraction of mush� using

x = dx�; t =

 
d2

�l

!
t�; T = T1L + (T1L � TE)T

�;

 = �l 
�; � = 1�

�
cE � c1

c1

�
�;

(2.1)
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Freckle formation in a solidifying binary alloy 179

whered is a macroscopic length scale (such as the height of the container holding the liquid
alloy),�l is the thermal diffusivity of the liquid phase,T1L is the far-field liquidus temperature,
andTE is the eutectic temperature. A reference value for the density is�0

l , gravity isg and

�� = �0
l [�

�

l (cE � c1)� ��l (T
1

L � TE)]

is the difference between the far-field liquidus density, and that of the eutectic liquid. Here
��l , �

�

l are thermal and solutal expansion coefficients,c1 is the far-field composition, and
cE is the eutectic composition. Henceforth we shall drop the asterisks on the nondimensional
variables. Nondimensionalisation introduces three parameters that govern solidification and
convection: the Rayleigh number

R =
��gd�0

��l
;

the superheat

�1 =
T1 � T1L
T1L � TE

and

S = 1+
L

Cl�c1
;

which is related to the Stefan number and reflects the contribution solidification makes to the
thermal budget. Here�0 is a permeability scale,� is the viscosity,L is the latent heat,�
is the liquidus slope, andCl is the specific heat of the liquid phase. Typical values of these
parameters for aqueous ammonium chloride given in EF are

R � 100; �1 � 1�6; S � 1�25: (2.2)

In terms of the temperatureT , composition of light componentc, stream function and
the (scaled) solid mass fraction of mush� the nondimensional model can be written asz!1

T!�1; (2.3)

for s < z <1:

Tt +  xjz=sTz = r2T; (2.4)

onz = s(x; t):

 n = 0; T = 0; T+n = �c�n ; (2.5)

for 0< z < s:

S[ct +  xcz �  xcx] = r2c; r2 = Rcx; S�t = r2c; (2.6)

onz = 0:

c = 1;  = 0; (2.7)
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180 P. W. Emms

wheren is the normal to the mush/liquid interface. These are Equations (5.1)–(5.5) of EF.
We use the notation[ � ]+� to denote the jump in the quantity across the interface. The

regions to which the model equations apply are shown in Figure 1. Equations (2.4) and (2.6)1

express conservation of energy in the liquid and mush regions. The advective term in (2.4)
requires some clarification. Emms and Fowler [7] found that finger-like convection above
the mush can be described by an averaged energy equation. However, once convection has
started in the mush, an additional mass flux will be superimposed on the finger structure.
The advective term in (2.4) represents an approximation to this flux. As long as the interface
remains fairly flat a purely vertical flux seems a reasonable approximation. In general, an
averaged momentum equation governs the flow in the liquid, but for simplicity we do not
consider this here. The remaining equations are Darcy’s law (2.6)2 and Equation (2.6)3 which
follows from conservation of species.

The temperature in the mush is given by the liquidus relation, which in nondimensional
variables is

T = �c: (2.8)

We are not concerned with the composition in the liquid region, as this uncouples in the model
presented here.

In the absence of convection( = 0), the reduced model has a similarity solution given
by

s0 = 2�
p
t; T0 = �1

�
1� erfc�

erfc�

�
;

c0 = 1� erfS1=2�

erfS1=2�
; �0 = c0;

(2.9)

where� = z=2
p
t and the free-boundary location� = � is determined by

�1 e��
2

erfc�
=
S1=2 e�S�

2

erfS1=2�
: (2.10)

From this state we aim to construct weakly nonlinear solutions and examine their stability.
However, we need to decide what we mean by stability, since the basic state is time dependent.
Furthermore, nonlinear stability theory is a generalisation of linear stability theory, so we must
specify just how the linear stability of a time-dependent state is defined. A similar problem
arises in the study of a fluid layer whose basic temperature profile is changing with time. Such
a situation can occur for example when one studies a growing thermal boundary layer [19]),
or a fluid layer being cooled from above [20]. Little analytical progress has been made in this
area, since the review by Homsy [21].

The nondimensionalised model is an implicit moving-boundary problem [22, pp. 19]
because there is no explicit relationship for@s=@t on the interface. We can make the problem
explicit by differentiating one of the boundary conditions onz = s with respect to time.
However, this still leaves the problem of calculating the moving interface relative to a fixed
mesh. One particularly attractive alternative is the fictitious-region method [23]. This is usually
applied to moving-boundary problems where only one of the phases is in motion, that is
solid/liquid Stefan problems. The method involves the construction of a set of equations valid
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Freckle formation in a solidifying binary alloy 181

over the entire domain, which reduce in each phase to the relevant governing equations. Thus,
the moving boundary is determineda posteriori. The construction of equations valid in both
domains means that a set of discontinuous coefficients must be introduced. Although the
fictitious-region method has been successfully applied to other Stefan problems, it is not the
method we choose here. This is primarily due to the form of (2.4) which necessitates the
introduction of a Heaviside function into the general governing equations.

Instead we apply a front-fixing transformation. This has the disadvantage that the form of
the equations is complicated, but as a by-product yields an evolution equation fors.

3. Nonlinear stability

The complexities of nonlinear stability analysis limit our scope for dealing with the time-
dependent basic state. Consequently, in this work we restrict ourselves to the concept of
quasi-static stability. Thus we write

t = s2
0t
�; x = s0x

�; z = s0z
�; Rm = s0R; s = s0s

�; (3.1)

where s0 = 2�
p
t is the position of the interface given by a similarity solution and is

considered fixed in time. The mush Rayleigh number is denoted byRm. Under the quasi-
static approximation the similarity solution (2.9) becomes (dropping the asterisks)

c0 = 1� erf(S1=2�z); c0 = �erf(S1=2�z)

erfS1=2�
erfS1=2�;

T0 = �1

�
1� erfc(�z)

erfc�

�
: (3.2)

Perturbing the basic state we write

c = c0 + bc; T = T0 + bT ; s = 1+ b�: (3.3)

Dropping the hats, and substituting in Equations (2.3)–(2.7) we obtain the following set of
equations

asz !1:

T ! 0; (3.4)

for 1+ � < z <1:

Tt +  xjz=1+�(T0z + Tz) = r2T; (3.5)

onz = 1+ �:

T0 + T = 0; c0 + c = 0;  z � �x x = 0;

T0z + Tz � Tx�x = cx�x � c0z � cz;
(3.6)

for 0< z < 1+ �:

r2 = Rmcx; S(ct �  zcx +  x(c0x + cz)) = r2c; (3.7)
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182 P. W. Emms

onz = 0:

c = 0;  = 0: (3.8)

We consider solutions to the above system of the form

 = " 1 + "2 2 + � � � ; T = "T1 + "2T2 + � � � ; c = "c1 + "2c2 + � � � ;
� = "�1 + "2�2 + � � � ; Rm = Rc + "2R2 + � � � ;

(3.9)

whereRc is the critical Rayleigh number given in the linear stability theory of EF, and the
perturbation parameter" � 1. Since we are expanding about the critical Rayleigh numnber,
there is no perturbation expansion for the wave number; the sign ofR2 determines whether
we consider solutions above or below the marginal stability curve (notice there is no"R1 term
in (3.9)5 – see below).

To study the stability of these solutions we employ a multiple-scales analysis, that is we
consider the slow time scale defined by

� = "2t; (3.10)

and examine slowly growing perturbations. This is at odds with the quasi-steady approximation
as noted by Robinson [19, 24] for a growing thermal boundary layer. However, we proceed by
considering stability to be ‘defined’ for this system relative to the steady state (3.2) obtained
by using the quasi-steady approximation. The reason for choosing"2 and not" to define the
slow time scale is that by symmetryR1 = 0 (or we find that for the solvability condition to be
satisfied at order"2 requiresR1 = 0). Then, in order to have a nontrivial Ginzburg–Landau
equation, we requiret � O("2) to be the slow time. As in the work of EF, we assume an
exchange of stabilities, so that

 =  (x; z; �); T = T (x; z; �); c = c(x; z; �); � = �(x; z; �):

Substituting the expansions (3.9) in (3.8) and collecting coefficients of powers of", we obtain
the following series of problems

asz !1:

Tk ! 0;

for 1< z <1:

r2Tk �  kxjz=1T0z = Ek;

onz = 1:

 kz = Ak; Tk + T0z�k = Bk; ck + c0z�k = Ck;

(T0zz + c0zz)�k + Tkz + ckz = Dk;

for 0< z < 1:

S�1r2ck �  kxc0z = Fk; r2 k �Rcckx = Gk;
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Freckle formation in a solidifying binary alloy 183

onz = 0:

ck = 0;  k = 0; (3.11)

for k = 1;2;3; : : :. The casek = 1 corresponds to the linear stability problem withA1 =
B1 = � � � = G1 = 0. The coefficientsAk; Bk; : : : ; Gk for k = 2;3 are given in Emms [18].

4. The Ginzburg-Landau equation

Guided by the linear stability analysis of EF we restrict attention to the horizontal domain
0< x < �=kc wherekc is the critical wave number. We enforce the boundary conditions

cx = Tx =  = 0;

atx = 0; �=kc. Thus we force the convection cells to be of uniform width. More generally we
can relax this assumption by introducing another larger space scale [25], [26]. However, this
will complicate an already laborious solution procedure and is not of practical interest for finite
solidification tanks, so we omit the possibility. Also note that we only consider perturbations
with the critical wavenumber at leading order. Thus the nonlinear stability analysis presented
here is much less general than the linear stability analysis presented in Emms [18], which
considered arbitrary infinitesimal perturbations. Using a complete set of orthonormal functions
(such as the eigenfunctions of the linear stability problem) it is theoretically possible for us
to consider an arbitrary finite-amplitude perturbation. This yields an infinite set of ordinary
differential equations to determine the stability [27, pp. 385]. Here we will instead only
consider the nonlinear interaction of the most unstable mode in the hope that other modes
have little effect on the stability of the solution.

If we write vi = ( i; ci; Ti; �i)
T then theO(") problem(k = 1) is

Lv1 =

0
BBBB@

r2 1 �Rcc1x

S�1r2c1 � c0z 1x

r2T1 � T0z 1xjz=1

((T0zz + c0zz)�1 + T1z = c1z)jz=1

1
CCCCA = 0; (4.1)

and the boundary conditions on the interfacez = 1 can be written

Bv1 =

0
B@

 kz

Tk + T0z�k

ck + c0z�k

1
CA = 0: (4.2)

The solution to (4.1) is of the form

v1 = A(�)

0
BBBB@
ik�1
c  11

c11

T11

�11

1
CCCCAeikcx; (4.3)

where the real part is understood to be under consideration,A = A(�) can be taken to be a
real function, and(ik�1

c  11(z), c11(z), T11(z), �11)
T is the eigenfunction given in EF.
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Thek = 2 problem can now be written

Lv2 =M2(v1); Bv2 = H2(v1); (4.4)

where

M2 =

0
BBBB@
G2(v1)

F2(v1)

E2(v1)

D2(v1)

1
CCCCA ; H2 =

0
B@
A2(v1)

B2(v1)

C2(v1)

1
CA :

Substituting (4.3) inM2 andH2 we arrive at expressions of the form

M2 = A2(m20 +m22 e2ikcx); (4.5)

H2 = A2(h20 + h22 e2ikcx); (4.6)

wherem20 = (0; f20; e20; d20)
T , m22 = (0; f22; e22; d22)

T , h20 = (�ia20; b20; bc20)
T , and

h22 = (�ia22; b22; bc22)
T . The hats onbc20, bc22 distinguish these variables fromc20, c22. Notice

that there is no solvability problem for (4.4), reflecting the fact thatR1 was set to zero earlier.
The general solution to (4.4) is

v2 = A2

0
BBBB@

0
BBBB@
 20

c20

T20

�20

1
CCCCA+

0
BBBB@
�i 22

c22

T22

�22

1
CCCCAe2ikcx

1
CCCCA+B

0
BBBB@
ik�1
c  11

c11

T11

�11

1
CCCCAeikcx; (4.7)

where the real part is understood. The functionB = B(�) is determined by the solvability
condition atk = 4. By examination ofA3, B3; : : : ; G3 we find the term containingB plays
no part in the solvability condition fork = 3. As noted by Drazin and Reid [27, pp. 383], this
is to be expected, since the term could equally be incorporated into the first order terms by
modifying the definition ofA. Henceforth, we shall drop this term fromv2. At this point it is
convenient to introduce the operatorsLn andBn defined by

Lnvmn =

0
BBBB@

(D2 � n2k2
c) mn +Rcnkccmn

S�1(D2� n2k2
c)cmn � nkcc0z mn

(D2� n2k2
c)Tmn � nkcT0z mn(1)

((T0zz + c0zz)�mn +DTmn +Dcmn)jz=1

1
CCCCA ; (4.8)

Bnvmn =

0
B@

D mn

Tmn + T0z�mn

cmn + c0z�mn

1
CA ; (4.9)

wherevmn = ( mn; cmn; Tmn; �mn)
T andD � d=dz.

At k = 2 we have two problems to solve

L0v20 = m20; B0v20 = h20 (4.10)
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and

L2v22 = m22; B2v22 = h22: (4.11)

The solutionv20 to the system (4.10) represents the so-called mean motion atO("2). The
numerical solutions to these problems will give

v2 = A2

2
66664

0
BBBB@
 20

c20

T20

�20

1
CCCCA+

0
BBBB@
 22 sin 2kcx

c22 cos 2kcx

T22 cos 2kcx

�22 cos 2kcx

1
CCCCA

3
77775 : (4.12)

The problem atk = 3 can be written

Lv3 =M3; Bv3 = H3; (4.13)

where

M3(v1; v2) =

0
BBBB@
g31(v1; v2) sinkcx

f31(v1; v2) coskcx

e31(v1; v2) coskcx

d31(v1; v2) coskcx

1
CCCCA+

0
BBBB@

0

: : : sinkcx

: : : sinkcx

: : : sinkcx

1
CCCCA+ higher harmonics: : : ;

H3(v1; v2) =

0
B@
a31(v1; v2)

b31(v1; v2)

c31(v1; v2)

1
CA coskcx+

0
B@
: : :

: : :

: : :

1
CA sinkcx+ higher harmonics: : : :

Consequently,we have a nontrivial solvability condition, which provides an evolution equation
for A. Equation (4.13) is only solvable if there exists a solution to

L1v31 = m3; B1v31 = h3; (4.14)

wherem3 = (g31; f31; e31; d31)
T andh3 = (a31; b31; bc31)

T . By the Fredholm alternative this
has a solution if

hm3; v
�

31i = B(h3; v
�

31); (4.15)

whereB is a bilinear function arising from the nonhomogeneous boundary conditions on the
interface. Here, the inner product is defined for real-valued vectorsu andv by

hu; vi =
Z 1

0
(u1v1 + u2v2)dz +

Z
1

1
u3v3 dz + u4v4: (4.16)

In addition v�31 = ( �31; c
�
31; T

�
31; �

�
31) is given by the solution to the homogeneous adjoint

problem

L�1v
�

31 = 0; (4.17)

with boundary conditions on the interface

B�1v
�

31 = 0: (4.18)
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Figure 2(a) The finite amplitude temperatureT , and (b) the difference to the similarity solutionT �T0 forR2 = 1
and" = 10�2.

Figure 3(a) The compositionc, and (b) the difference to the similarity solutionc� c0 for R2 = 1 and" = 10�2.

The exact forms ofL�1,B�1 andB can be found from integration by parts. The details are given
in Emms [18].

Equation (4.15) is the Ginzburg-Landau equation. A great deal of computation will even-
tually lead to an equation of the more familiar form

dA
d�

= �1R2A+ �2A
3; (4.19)

where�1, �2 must be determined numerically. From EF we must have�1 > 0, since we
have instability forR > Rc. If �2 > 0, the bifuraction from the basic state is said to be
subcritical, whereas, if�2 < 0, the bifurcation is supercritical. If the bifurcation is subcriti-
cal, we would expect experimental and numerical results to predict the onset of convection at an
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Figure 4.The stream function for R2 = 1 and
" = 10�2.

Figure 5. The interface positions for R2 = 1 and
" = 10�2.

Figure 6.The range of validity of the weakly nonlinear solution. Figure 7. The finite difference
grid shown for the representa-
tive valuesh = 1

12, F = 2.

earlier time than predicted by linear stability. Also, initial conditions would play an important
part in the determination of the critical time. If the bifurcation is supercritical, the instability
should be relatively insensitive to initial conditions, assuming the quasi-static approximation
is reasonable.

We performed two sets of calculations using a far-field approximationz = F = 10, 20.
The calculations are rather complicated since the solution to the linear stability problem can
only be found numerically. The details of the calculation can be found in Emms [18]. To
summarise, the problem requires the numerical solution of the linear stability problem (4.3),
the two linear systems atk = 2: (4.10), (4.11), and the adjoint problem (4.17). These solutions
then give the coefficients of (4.19) when substituted in (4.15).

Using the values in (2.2), we observed that both numerical computations forF = 10,
F = 20 gave the values of�1 and�2 in (4.19) as

�1 = 0�35; �2 = �0�045: (4.20)
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The results indicate a supercritical bifurcation, with the approximation of the infinite boundary
having no discernible effect. Thus, a stable finite-amplitude solution exists forR2 > 0 with
equilibrium amplitude

Aeq =

s
��1R2

�2
: (4.21)

This solution is plotted in Figures 2–5 forR2 = 1 and" = 10�2, which givesAeq = 2�78.
The stream function is positive which indicates that convection proceeds in a clockwise
direction in the mush. This increases the composition on the left-hand side of the cell(near
x = 0) and decreases composition on the right (Figure 3b). Without the quasi-steady approx-
imation, the (scaled) mass fraction of solid is related to the composition by

�t =
dc
dt

= S�1r2c: (4.22)

From the equilibrium compositional field (Figure 3) we can see that xcz is negative on the left
of the cell and positive on the right. Therefore, freezing is inhibited on the left and promoted
on the right. The mush/liquid interface is located on the isothermc = 0. Consequently, the
interface advances on the left side of the cell as shown in Figure 5.

The size of" measures the strength of convection. As" is increased, so the solid fraction
on the left side of the cell is diminished until eventually� < 0 inside the mush. Consequently,
the theory predicts a channel forming in the mush near the liquid interface. Thus� < 0
is our criterion for channelling and ultimately freckle formation. It is also the metallurgical
condition [16] evaluated on the mush-liquid interface, since if� < 0 at z = s then from
(4.22), dT=dt > 0 atz = s.

Once� < 0, our model is no longer valid, and so there is a bound on the validity of the
finite amplitude solutions. We can determine this bound by noting onz = s, �t = Sczz. Of
course, we present our equilibrium solution in terms of variables defined using the quasi-steady
approximation (3.1). However, we only need the sign ofczz. Therefore, since the amplitude
of the nonlinear solution increases monotonically to the equilibrium valueAeq, we can use
czz < 0 at z = s as the bound. In Figure 6 we plotted minxczz(x;1) for 0 6 x 6 �=kc

against" using the equilibrium finite-amplitude solution forR2 = 1. At " = 0�82,� becomes
negative and the finite-amplitude solution has no physical meaning. As we require" � 1
to perform the weakly nonlinear analysis, this bound does not restrict the range of solutions
further. However, it does mean that we cannot use the nonlinear solution to give a criterion for
freckling. Indeed, such a criterion would be rather unsatisfactory as it would be given in terms
of the fluid velocity which is an integral part of the problem. We can resolve this difficulty by
solving the reduced model numerically and we address this problem next.

5. The numerical solution

We fix the interface onZ = 1 by applying the transformation

z = sZ: (5.1)

This disrupts the structure of the equations sinces = s(x; t). If we define the width of the
horizontal domain asdw, then it is convenient to rescale

x = dwbx; t = d2
w
bt; (5.2)
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in an analogous manner to the linear stability analysis of EF. Generally we hope to setdw
close to�c=2 where�c is the critical wavelength given by linear stability theory. This should
mean that the most unstable mode (predicted by linear stability) will be excited during the
numerical simulation, and therefore the results can be compared. If we just setdw = 1, then
linear stability predicts that the onset of convection is delayed. Furthermore, as time progresses,
the mush interface advances, but the width of the cell remains fixed. Thus, the aspect ratio
increases, as does the minimum wave number that can be excited, which further delays the
onset of convection. Consequently, the situation may arise in which convection never occurs
for sufficiently smalldw. Note that, ifdw is made sufficiently large, multi-cellular convection
is expected, anddw is then not the width of acell. Henceforth we shall drop the hats onx
andt. We also need some additional boundary conditions onx = 0;1, which we take to be
periodic, that is

 = Tx = sx = 0: (5.3)

At t = 0 there is a singularity in the interface velocity_s = �=
p
t. Therefore, we start the

numerical simulation using the similarity solution at timet = ts < tc, wheretc = tc(�1) is
the time when convection is initiated according to the linear stability analysis of EF. The effect
of an initial perturbation to the non-convective state can be assessed if the initial conditions
are taken as

s = s0 + � cos�x;  = � sin�x sin(�Z=2);

T = T0� � cos�x sin�Z; � = �0 � � cos�x sin�Z;
(5.4)

at t = ts, where� represents the size of the initial perturbation. Although (5.4) satisfies the
boundary conditions to the problem, it is obviously not a solution. Consequently, we expect
there will be a short transient in which the numerical scheme adjusts to the solution of the
equations. It is expected that the perturbation will initially decrease and then increase, once
convection has been initiated.

The application of the front-fixing transformation (5.1) considerably disrupts the structure
of the full equations. Consequently, we shall only consider two numerical schemes, both of
which approximate the time derivative with a backward difference. For simplicity we assume
a square mesh with the number of intervals in thex-direction and thez-direction given by

Nx =
1
h
; Nz =

F

h
; (5.5)

respectively, wherez = F is the approximation to the infinite boundary, andh is the step
size. The finite-difference grid is shown in Figure 7 with the interface lying onj = M .
Using the usual notation, we observe that the quantityT n

i;j represents the approximation to
T (ih; jh; n�t). The first and second spatial derivatives are approximated by means of central
differences, and so the truncation error isO(�t + h2). The front-fixing transformation also
introduces mixed derivatives. We approximate these terms using a non-centred seven-point
molecule of the form

@2T

@x@Z
�
T n
i;j+1� T n

i�1;j+1 + T n
i+1;j � 2T n

i;j + T n
i�1;j � T n

i+1;j�1 + T n
i;j�1

2h2 (5.6)

In the first numerical scheme the interface position and the convective derivatives are cal-
culated from the temperature field at the old time step. Thus, the finite-difference equations
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Figure 8.The evolution of the mush/liquid interface fordw = 2�0,�1 = 1�6,�t = 10�3, h = 1
32, � = 10�5,

ts = 0�1 where (a) showsz = s(x; t), and (b) shows the difference to the similarity solutions0.

are linear in variables at the new time step. We call this the lagged scheme. The second scheme
uses the temperature field at the new time step, and so requires successive substitution.A priori
we expect the second, fully implicit scheme to describe the coupling betweens, T andpmore
accurately. Both schemes lead to a system of difference equations of the same structure.

6. A typical time series

In this section we describe a simulation for a typical value of the superheat�1 = 1�6, and
S = 1�25 using the fully implicit scheme. Linear stability theory (EF) predicts convective
instability attc = R2

c=4�
2R2d2

w, which forR = 10 anddw = 2 givestc = 0�286. We take
the width of the horizontal domain to bedw = 2 because the critical wavelength predicted by
linear stability is

�c = 2�Rc=kcR: (6.1)

One convective cell is expected to have a width�c=2, and for the values above,�c = 3�57. The
simulation was started at timets = 0�1, and the initial perturbation to the similarity solution
was set to� = 10�5, in an effort to minimize noise at the beginning of the simulation. The
mesh sizeh, and the time step�t were specified ash = 1

32, and�t = 10�3. The results are
displayed in Figures 8–10.

The evolution of the mush/liquid interface is shown in Figure 8(a), and the deviation from
the similarity solution in Figure 8(b). It can be seen from these figures that there is little
deviation from the similarity solution, but towards the end of the simulation the interface
advances more quickly nearx = 0, and is slowed nearx = 1. As with the nonlinear solutions
this corresponds to clockwise convection in the mush carrying colder, more concentrated
liquid up the left-hand side of the cell, and therefore promoting solidification. Conversely, on
the right-hand side of the cell, warmer less concentrated fluid from the liquid region enters
the mush and inhibits solidification.
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Figure 9.(a) The mass fraction difference�� �0 at (a)t = 0�3, (b)t = 0�7, (c) t = 0�9, (d) t = 1�1, (e)t = 1�5,
(f) t = 1�9. The initial data was the same as in Figure 8.

engi626.tex; 30/01/1998; 13:30; v.7; p.17



192 P. W. Emms

In Figure 9 the evolution of the mass fraction is depicted. Little deviation is expected
initially from the non-convective solution, so the results are presented as the difference from
the similarity solution�0. Initially at t = 0�3 (Figure 9(a)) the solution is dominated by
the local discretisation error for the diffusive terms, even though linear stability predicts
convection to have been initiated. In Figure 9(c) there is somex-variation which suggests
that convection has started. Solute-rich fluid rising on the left side of the cell decreases the
mass fraction of solid, while falling solute-depleted fluid on the right increases the solid mass
fraction. Gradually the effects of convection become more pronounced (Figures 9(d–f)) until
eventually att � 2 � 0 the simulation fails to find a solution to the difference equations. In
the steady case it is known that, once� becomes negative, the solution fails to exist by a
maximum principle [16]. Thus, in the current simulation we suspect that, once� < 0 at some
timet = tNf , the solution no longer exists, and therefore the numerical scheme will ‘blow-up’.
Indeed, if we plot� at two times before the end of the simulation (Figures 10(a,b)), we can
see that� is negative at the mush/liquid interface(Z = 1), and a channel appears to grow
down into the mush. This is observed experimentally by Tait and Jaupart [4]. However, it
should be remembered that our mathematical model is invalid as soon as� < 0. We might
consider the mush interface to be now on� = 0, and specify the other appropriate interfacial
boundary conditions there. Unfortunately, we have assumed a particular structure for the flow
in the liquid region. When� < 0, the convection is shown experimentally to be dominated by
the flow out of the chimneys, obliterating the finger-like structure in the liquid. Consequently,
we must reformulate our model if we wish to follow the development of a channel within the
mush.

7. Further results

From the sequence of graphs 8–10 it is difficult to ascertain exactly when convection starts.
Near the beginning of the simulation the stream function is very small, its magnitude being
determined by the initial perturbation. To gauge the strength of convection we introduce the
2-norm defined by

jj jj =
 Z 1

0

Z 1

0
j j2 dxdZ

!1=2

: (7.1)

Thus fort � ts, jj jj � �, where� is the initial perturbation. If we suppose that growth (or
decay) is locally exponential (in time) of the form e�t, then the local growth rate is

� =
1
�t

log
� jj (t+ �t)jj

jj jj

�
; (7.2)

where�t is some small time perturbation. In particular we can use the criterion� > 0 for
the onset of convection in the mush. In terms of the finite-difference schemes, we use the
trapezium rule to approximate (7.1) giving

jj jj � h2

2
41

2

Nx�1X
i=1

( ni;M )2 +
M�1X
j=1

Nx�1X
i=1

( ni;j)
2

3
5 : (7.3)

The time perturbation�t was typically taken to be ten time steps in order to help smooth
numerical noise.
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Figure 10.(a) The mass fraction of solid� at (a)t = 1�9, (b)t = 2�0. The initial data was the same as in Figure 8.

Figure 11.The growth rate� as a function oft for
dw = 2�0, �1 = 1�6, �t = 10�2, h =

1
16, � =

10�5, ts = 0�05.

Figure 12.The evolution of�f . Initial data was the
same as in Figure 11.

The onset of freckling has been defined to occur when� < 0. However, this is not the most
convenient form for a finite-difference scheme. If we define

�f = max
0<x<1

�
��(x;1� h; t)

h

�
; (7.4)

then to leading order�f is independent of the grid spacingh. The condition for the onset
of freckling is now�f > 0. In Figures 11 and 12 we plot� and�f for the same initial
data as the time series in the Section 6. As is evident from Figure 11, the initial perturbation
� = 10�5 decays until att � 0�18,� > 0 and convection begins. Growth is then approximately
exponential with� � 5, until att � 2�2 the simulation terminates. From Figure 12 we see that
convection has little effect on the mass fraction right up tot � 1�5. At t � 1�9, �f > 0, and
hence we predict channel formation. In one further plot (Figure 13) we show the variation of
�f with jj jj. Notice howjj jj remains small throughout the simulation, and barely reaches
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0�02 before the program terminates. This tends to support the supposition that the solution to
the problem does not exist for�f > 0, and we are not witnessing numerical instability.

A fundamental requirement of any finite-difference scheme is that the solution produced
should be independent of the grid spacing. We can use the growth rate�, and the freckling
parameter�f to assess the dependence for the fully implicit scheme. In Figure 14(a,b) we plot
� and�f against time forh = 1

16, 1
32, 1

48. There is very good agreement for the growth rate
over the entire simulation. Indeed all three runs gave the onset of convection astNc � 0�18. We
use a superscriptN to denote values obtained from the numerical simulation. The agreement
is not so good for�f , especially near the end of the simulation.

We can make another check on the schemes by fixing the interface and only consider the
temperature and stream function in the mush. The equations are then effectively those for
convection in a porous medium for which it is known that the critical Rayleigh number is
Rc � 27�1 [28]. Here the equivalent Rayleigh number issR. The onset of convection was
determined numerically in this case to occur whensR � 27, further validating the schemes.

Figure 13.The variation of�f with jj jj. Initial data was the same as in Figure 11.

Figure 14.(a) The effect of mesh refinement on (a) the growth rate�, and (b) on�f for dw = 2�0,�1 = 1�6,
�t = 10�3, ts = 0�05,� = 10�5.
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Table 2. The effect of varying the width of the horizontal domaindw with initial
data�1 = 1�6,h = 1

32, � = 10�5, d2
wts = 0�4, d2

w�t = 4� 10�3.

Domain widthdw Onset of convectiond2
wt

N
c Onset of frecklingd2

wt
N
f

1�0 — —
2�0 0�69 7�46
3�0 0�62 8�10
4�0 0�62 9�38

Figure 15. A comparison of the lagged and fully
implicit schemes. Initial data for the lagged scheme
wasdw = 2�0,�1 = 1�6,�t = 2� 10�4, h = 1

16,
ts = 0�5. For the implicit scheme the time step was
increased to�t = 10�3.

Figure 16.The growth rate� for different start times
ts. Initial data wasdw = 2�0, �1 = 1�6, h = 1

16,
� = 10�5,�t = 10�3.

7.1. INITIAL CONDITIONS

In this section we determine the dependence of the convection timetNc and the freckling time
tNf on the initial conditions. Clearly, there will be some effect on the subsequent solidification
if the initial perturbation is sufficiently large. We plottNc andtNf against� using each scheme

for h = 1
16 in Figure 15. A coarser mesh was used because each point represents a separate

simulation, which means that the computational cost rises. For� = 10�9, 10�8, 10�7 the onset
of convection could only be estimated from the curve� = �(t). A large amount of numerical
noise made this difficult, so these points are speculative. The two schemes gave approximately
the same value oftNc , irrespective of the initial perturbation (with the above proviso). This
suggests that the bifurcation to the convective state is supercritical in line with the results of
the nonlinear stability analysis. However, the onset of channels clearly depends strongly on
the initial perturbation. For small� there is considerable disagreement between the schemes.
The fully implicit scheme shows the expected tendency oftNf ! const: as� becomes small,
since then the truncation error is bigger than�. The lagged scheme does not appear to model
the coupling between�, T , andp as well, so in future we restrict attention to the fully implicit
scheme. We obtain similar results by varying the start timets (Figure 16). Changing thets is
tantamount to changing the initial perturbation. A larger value ofTs meansjj jj will be larger
at the onset of convection, hence significantly diminishing the time for freckles to form.
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Table 3. The onset of convection in the mush withdw = 2�0,�t = 10�3,h = 1
16, � = 10�5,

ts = 0�05.

�1 � d2
wtc (linear stability) d2

wt
N
c (simulation) RN

c Rc kc

0�1 1�1205 0�448 0�333 12�93 15�00 1�74
0�3 0�8090 0�510 0�332 9�32 11�56 1�59
0�6 0�6075 0�623 0�336 7�04 9�59 1�48
1�0 0�4666 0�806 0�452 6�27 8�38 1�39
1�6 0�3503 1�146 0�748 6�06 7�50 1�31
3�0 0�2238 2�253 1�932 6�22 6�72 1�21
6�0 0�1270 6�094 6�660 6�55 6�27 1�14
10�0 0�0807 14�439 — — 6�13 1�11
1 0 1 — — 6�03 1�09

For domains of greater width we resort to a finer meshh = 1
32 in an attempt to preserve

accuracy. A number of results for differing cell widths are shown in Table 2. A square
domain(dw = 1) did not give rise to convection, and hence there was no freckling. Note
that the times are multiplied byd2

w to reflect the initial scaling made in Equation (5.2). The
onset of convection was not greatly affected by the width of the horizontal domain, but
the onset of freckling was more strongly influenced. The results show that a wider mold will
significantly inhibit freckling, which is somewhat contrary to experimental evidence. It should
be remembered, however, that the initial perturbation (5.4) assumed a single convection cell.
For larger values ofdw a number of convection cells form. This means that an additional time
is needed to adjust to the correct form of solution, which delays the initiation of channelling.

7.2. ACOMPARISON WITH LINEAR STABILITY THEORY

Linear stability calculations for the initiation of convection were presented in EF as a function
of the superheat�1. In this section we compare those results with the present numerical
calculations. In Table 3 we have tabulated a number of results for differing superheats. From
the linear stability analysis the critical Rayleigh numberRc, and the critical wave numberkc
were calculated. The critical wavelength is given by

�c =
2�Rc

kcR
; (7.5)

and the time for the onset of convection is

d2
wt

N
c =

R2
c

4�2R2 : (7.6)

The initial data for each run is given in the caption to the figure. A plot of the numerical
results for the critical Rayleigh numberRc is shown in Figure 17. Increasing superheat appears
to delay the onset of convection as has been noted by Worster [29]. Also shown on Figure 17
are the linear stability results from EF. For large values of�1 a numerical solution is not fea-
sible with the present scheme. Indeed, to compute the results for�1 = 6�0 we requireF = 20,
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Figure 17.A comparison of the critical Rayleigh num-
ber for convection in the mush as predicted by the
linear stability analysis, and the numerical simulation.
For each pointdw = 2�0, �t = 10�2, h =

1
16,

� = 10�5, ts = 0�05.

Figure 18.The effect of varying the initial perturba-
tion to the similarity solution on the onset of freckles.
Initial data was the same as in Figure 15.

with a correspondingly large increase in computational time. In the stability analysis of EF it
was found thatRc ! const: as�1 !1. Here,RN

c increases at large superheat, even though
tNc is still increasing. Generally, the numerical results predict the onset of convection earlier
(initial conditions have little effect). We can take this as a consequence of the quasi-steady
approximation. However, it is reassuring to note that the results are qualitatively similar.

7.3. THE ONSET OF CHANNELLING

It was established in Section 7.1 that the freckling time depended strongly on the initial
perturbation. We will now establish the form of the dependence. More generally (not just for
exponential growth), we define the local growth (or decay) rate to be

� =
1
jj jj

djj jj
dt

: (7.7)

On integration we obtain

jj jj = jj jjc exp

"Z t

tNc

�(t)dt

#
; (7.8)

wherejj jjc = jj jj at t = tNc . If we defineT = log jj jj at t = tNf , then

T =

Z tN
f

tNc

�(t)dt+ log jj jjc : (7.9)

From Figure 11 it can be seen that� quickly attains a fairly constant value after the onset of
convection. On assuming that� = �� is constant, we find that (7.9) becomes

tNf � tNc =
T � log jj jjc

��
: (7.10)
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We plot tNf � tNc against logjj jjc for �1 = 1�6 in Figure 18. The assumption of constant
growth rate appears to be a very good approximation. A best fit straight line was calculated to
be

tNf � tNc = �0�13� 0�17 logjj jjc ; (7.11)

which gives�� � 6 (cf. Figure 11). Thus, (7.11) gives the freckling time as a function of the
initial perturbation; the onset of convection remains constant attNc � 0�18 for�1 = 1�6.

Careful experimentation should lead to very small initial perturbations. Therefore, a value
for the freckling time might reasonably be taken as the maximum time predicted by the implicit
scheme, that isd2

wt
N
f � 10�4 (Figure 15). If we use the similarity solution to define a Rayleigh

number for the onset of freckles, then

RN
f = 2�dw

q
tN
f
R: (7.12)

ForR = 10, we findRf � 22�6. Such a value can only be a crude estimate for the time at
which channels might be visible in experiments, sinceR is usually an order of magnitude
larger. However, the figure does not seem unreasonable given that the critical Rayleigh number
for freckling recorded experimentally ranges from 20 to 250 [4, 30]. Indeed, experiments have
yet to distinguish the convective instability from the onset of channelling, primarily due to
difficulty of making observations in the mush.

8. Conclusions

Stable weakly nonlinear solutions appropriate to convection in a solidifying mushy layer have
been derived. These are able to predict the onset of freckling, but only outside the range of
the validity of the asymptotic expansions. Thus we solved the alloy model numerically, using
a front-fixing transformation. We aimed to complement the Rayleigh-number criterion for
convective instability in the mush, with a Rayleigh-number criterion for freckle formation (as
suggested by Fowler [16]). From the numerical simulation we found that this is not possible,
because freckle formation is strongly influenced by the initial conditions. Thus, we can only
stipulate a critical Rayleigh number for freckling at which very small initial perturbations to
the convective state lead to channelling. It appears that the best way to prevent freckles from
forming is to prevent the onset of convection in the mush (e.g.by some stirring mechanism).

The two numerical schemes describe one way of solving the moving-boundary problem
that arises out of alloy solidification. They are not necessarily the best way, but they do enable
the first theoretical computations to be made for freckle formation. Of course, we could
improve the efficiency of the schemes by introducing a variable time step or mesh size. The
time step must be sufficiently small neart = ts to model accurately the large change in the
interface position. However, later on in the simulation there is no reason why the time step
could not be increased. A variable grid spacing would allow more nodes to be placed near the
interface, and fewer nearZ = F . This would decrease computation time considerably, since
at present the routine spends most of its time finding the temperature in the liquid region.
These measures would, however, complicate an already laborious solution procedure.

The independence of the onset of convection with the magnitude of the initial perturbation
would seem to be at odds with the hypotheses of Amberg and Homsy [9]. They predicted
a subcritical bifurcation from the convection-less state with the chimney flow régime as the
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appropriate solution, once the flow was sufficiently rapid. Here, the numerical simulation pre-
dicts a supercritical bifurcation in agreement with the nonlinear stability analysis in Sections 3
and 4. However, it should be remembered that Amberg and Homsy allowed the permeability
to be a function of porosity, whereas in the reduced model (2.3)–(2.7) permeability is assumed
constant.

The analysis presented herein was guided by the solidification of ammonium-chloride
solution. Recently, Huppert [31] has case some doubt as to whether results obtained from
the study of this solution can be extrapolated to metal binary alloys. Many other aqueous
salt solutions exhibit the same convective flow patterns as are found in the solidification of
ammonium chloride. Yet, rarely do other aqueous solutions form the distinctive chimneys
structures visible in the mush. This may be due to the low entropy of fusion of ammonium-
chloride solution in common with metal alloys, or the fact that it forms non-faceted (and
thus truly dendritic) unhydrated crystals. Huppert and Hallworth [32] have noticed that the
tendency to form freckles is reduced if copper sulphate is added to the solution. This makes
the crystals more faceted and so might explain the special properties of ammonium chloride.
However, Worster and Kerr [33] have recently suggested that the addition of copper sulphate
increases the undercooling at the mush/liquid interface, which in turn lowers the Rayleigh
number for the mush. Clearly this problem has not yet been fully resolved.
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